经过多年发展,钢铁行业工业自动化系统的主体架构一般分为 5 层,如图 1 所示: 检测及执行设备级 L0、基础自动化级 L1、过程自 动 化 级L2、制造执行系统 L3 和企业资源计划 L4,每层根据功能或控制范围又划分为多个系统。各层系统之间的数据通过接口协议互相传递,业务应用互相关联。
随着计算机和控制器的能力越来越强大,过程自动化级的很多功能“下沉”至基础自动化级来执行,融合形成“过程控制级”; 而管理的扁平化需求,使得制造执行系统和企业资源计划的分工界限变得不那么明显,融合形成“生产管理级”。但无论是 5 层结构,还是其他类型的结构,总体上都是围绕企业的核心发展目标,实现各系统的功能定位和分工合作。
通过总结工业生产对控制技术的要求,工业自动化系统一般需要具有以下特点。
( 1) 确定性。确定性是指工业自动化系统必须有确定的响应能力,主要包括: 1) 实时性。工业自动化系统一般都是实时系统,很多情况下延迟对于生产过程信息传送来说是不可接受的。2) 可预测性。即在满足一定条件下,系统的输出是可预期的,差异在可控或可接受的范围内。3)手动优先。在非正常的情况下,工业自动化系统的部分功能可以被操作人员确定性的手动接管,使得整个系统可以在降低部分性能( 包括便利性) 的手动模式下继续运行。
( 2) 可用性。可用性是指在外部资源得到一定程度的保证的前提下,工业自动化系统可执行规定功能的能力,主要包括:
1) 可靠性。由于其控制对象的重要性,工业自动化系统一般要求连续工作,不允许控制系统的突然中断和重新启动,这也就意味着在传统 IT 技术中通过重启动来复位系统的意外故障,在工业自动化系统中几乎是不可接受的。因此,在工业自动化系统中要通过尽量简洁、可控、必要的代码去实现所需的功能,在投入运行前经过反复详细的测试,以确保尽量减少意外中断的可能。
2) 容错性。工业自动化系统在设计和测试时就必须尽量多地考虑系统在各类输入条件下的响应,在部分输入信号出现异常时,系统可以继续工作或自动进入安全状态,避免产生极端的错误输出,导致设备或产品损害,甚至人身伤害。
3) 安全性。工业自动化系统一旦受到网络攻击所带来的后果比 IT 领域要严重的多,会导致生产停机、设备损害或安全事故,因此必须结合应用场景,合理部署安全解决方案,实现功能安全和信息安全的有机融合。
( 3) 经济性。经济性是指企业从一项投资活动中得到的经济回报。钢铁企业有深厚的行业背景和鲜明的个性化特征,很多先进的技术难以在其他行业、不同生产线之间实现简单的复制推广,IT 领域的市场模式在工业领域并不一定适用。因此,技术的开发是否具备合适的经济性需要综合考虑。
随着计算机技术的发展,工业自动化系统大量使用计算机、操作系统和各类网络协议,引入越来越多的IT技术。一些技术在引入的过程中,针对工业生产的要求进行了改造、验证和推广应用。智能制造系统中很多基础性技术如人工智能、工业大数据、工业互联网平台等也来源于IT技术,在引入工业生产的过程中,也需要根据要求,综合考虑确定性、可用性、经济性因素,进行必要的调整改造。
智能制造的发展总体上应该是一个循序渐进的过程,需要依据生产需求和相关技术在不同发展阶段的特点,合理确定相关技术所能发挥的作用,以及其在整个生产体系的地位,最终目标是实现各项技术与现有的工业自动化系统结合,形成有机的整体,有效地实现企业的发展目标。