智能制造发展的主要领域

智能制造的集成创新和应用示范主要聚焦感知、控制、决策、执行等核心关键环节;通过推进产教研用联合创新,攻克关键技术,提高质量和可靠性;通过集成开发一批重大成套装备,推进工程应用和产业化。以下六大领域是智能制造的重点研发方向。

工业机器人

工业机器人是一种集成计算机技术、制造技术、自动控制技术并配备传感器、人工智能系统的智能生产装备。其主体由机器本体、控制器、伺服驱动系统和检测传感装置构成,具有拟人化、自控制、可重复编程等特性。随着人工智能技术、多功能传感技术以及信息收集、传输和分析技术的迅速突破与提升,配备了传感器、机器视觉和智能控制系统的工业机器人逐渐呈现出智能化、服务化、标准化的发展趋势。智能化使工业机器人可以根据对环境变化的感知,通过物联网,在机器设备之间、人机之间进行交互,并对环境自主作出判断、决策,从而减少生产过程对人的依赖;服务化要求未来的机器人结合互联网,在离线的基础上,实现在线的主动服务;标准化是指机工业器人的各种组件和构件实现模块化、通用化,使工业机器人使用更加简便,并降低制造成本。

智能数控机床

智能数控机床是数控机床的高级形态,融合了先进制造技术、信息技术和智能技术,具有自主学习能力,可以预估自身的加工能力,利用历史数据估算设备零件的使用寿命;能够感知自身的加工状态,监视、诊断并修正偏差;对所加工工件的质量进行智能化评估;通过各种功能模块,实现多种加工工艺,提高加工效能和控制度。其发展呈智能化、多功能化、控制系统小型化趋势。

3D打印(增材制造)

3D打印技术以数字模型文件为基础,应用可粘合材料,通过连续的物理层叠加,逐层增加材料来生成三维实体,因而又被称为增材制造(AdditiveManufacturing,AM),是融合了数字建模技术、机电控制技术、信息技术、材料科学与化学等诸多方面的前沿性、知识综合性应用技术,可对个性化、小批量产品进行很好的成本控制,预计未来将会更多地应用在生物医疗、航空航天、军工等小批量个性化需求的领域。此外,为了节省支撑材料带来的打印成本,未来3D打印将向着无支撑化研究发展,例如现在已经较为成熟的悬浮3D打印和高速激光烧结(HSS)。

智能传感器

智能传感器(IntelligentSensor)是一种将待感知、待控制的参数量化并集成应用于工业网络的新型传感器,具有高性能、高可靠性、多功能等特性,带有微处理机系统,具有信息感知采集、诊断处理、交换的能力,是传感器集成化与微处理机相结合的产物。未来的智能传感器将更多地结合微处理器和新型工艺材料,如表面硅微机械加工以及用来形成三维微机械结构的微立体光刻新技术,提升传感器的精度,增加传感器环境适应性;同时,和IoT、互联网结合,实现网络化,可实时采集和传递数据;除了工业制造,还能被广泛应用于生活服务中。

智能物流仓储

在工业4.0的智能工厂框架中,智能物流仓储位于后端,是连接制造端和客户端的核心环节,由硬件(智能物流仓储装备)和软件(智能物流仓储系统)两部分组成。其中,硬件主要包括自动化立体仓库、多层穿梭车、巷道堆垛机、自动分拣机、自动引导搬运车(AGV)等;软件按照实际业务需求对企业的人员、物料、信息进行协调管理,并将信息联入工业物联网,使整体生产高效运转。智能物流仓储在减少人力成本消耗和空间占用、大幅提高管理效率等方面具有优势,是降低企业仓储物流成本的终极解决方案。无人化是智能物流仓储重要的发展趋势,搬运设备根据系统给出的网络指令,准确定位并抓取货物搬运至指定位置,常见的轨道AGV在未来将会被无轨搬运机器人取代。

智能检测与装配装备

随着智能传感器的不断发展,各种算法不断优化,智能检测和装配技术在航空航天、汽车零部件、半导体电子医药医疗等众多领域都得到了广泛应用。基于机器视觉的多功能智能自动检测装备可以准确分析目标物体存在的各类缺陷和瑕疵,确定目标物体的外形尺寸和准确位置,进行自动化检测、装配,实现产品质量的有效稳定控制,增加生产的柔性、可靠性,提高产品的生产效率。数字化智能装配系统可以根据产品的结构特点和加工工艺以及供货周期进行全局规划,最大限度地提高装配设备的利用率。除了在航空航天、汽车领域的应用,智能检测和装配装备在农产品分选和环保领域领域将有很大的潜力。